1. RAZONES
La
razón de dos números resulta de dividir ambos números. Por ejemplo la
razón de 7 a 4 se escribe 7/4 o 7:4 y se lee siete es a cuatro. El
primer término es el antecedente y el segundo consecuente.
2. PROPORCIONES.
Consiste en la igualdad entre 2 razones y se representa de dos maneras:
a/b=c/d o a:b::c:d
Y se lee a es a b como c es a d. Los puntos a y d se llaman extremos y los puntos b y c se llaman medios.
PROPIEDADES.
A) En toda proporción el producto de los medios es igual al producto de los extremos.
a×d=b×c
B) En toda proporción un MEDIO es igual al producto de los extremos dividido por el otro MEDIO.
b= a×d͟∕c
C) En toda proporción un EXTREMO Es igual al producto de los medios dividido por el otro EXTREMO.
a=b×c∕d
1- Razón
Una razón es una comparación entre dos o más cantidades. Puede expresarse mediante una fracción. Si las cantidades a comparar son a y b, la razón entre ellas se escribe como:
Ejemplo:
En una sala de clases hay 10 mujeres y 18 hombres.¿Qué relación numérica existe entre el número de mujeres y el número de hombres?
La relación entre el numero de mujeres y el número de hombres es de "10 es a 18" , otra forma de leerlo es "10 de 18 "
El término a es el antecedente de la razón y el b, el consecuente.
El resultado de la división o cociente entre el antecedente y el consecuente se denomina valor de la razón
Dos o más razones son equivalentes cuando tienen igual valor.
1.1- Resolución de problemas:
Veamos como resolver problemas de razones:
Ejemplo 1:
La edad de 2 personas están en la relación de 5 a 9 y la suma de ellas es 84. Hallar las edades.
Solución:
Si las edades son a y b
Cuando nos hablan de relación o razón entre dos cantidades sabemos que nos están hablando de una comparación entre dos cantidades. Por lo tanto expresamos los datos como una razón:
Ahora volvemos a los datos del problema:
Nos indican que la suma de los 2 números nos tiene que dar 84. Esto se expresa así:
Ahora lo que debemos hacer es trabajar con una constante, que en este caso será " X" . Por lo tanto :
Reemplazando los datos en la ecuación tenemos:
Ahora que tenemos el valor de x podemos reemplazar para obtener los valores de a y b :
Respuesta: Por lo tanto podemos decir que las edades son 30 y 54.
Ejemplo 2:
El perímetro de un rectángulo mide 128 cm, y la razón entre las medidas de sus lados es 5: 3. Calcula el área del rectángulo.
Solución:
Siguiendo el procedimiento del problema anterior planteamos el problema en una ecuación. Sabemos que el perímetro de un rectángulo es igual a la suma de todos sus lados:
Si expresamos las variables dadas en el problema:
Ahora reemplazamos y resolvemos:
Con este resultado reemplazamos :
Ahora no nos debemos olvidar que nos están pidiendo el área del rectángulo. Sabemos que el área del rectangulos se calcula :
A = 40 • 24 = 960
Respuesta: El área del rectángulo es 960 cm2
Otra forma de resolver razones es siguiendo los siguientes pasos:
Respuesta: Hay 12 automóviles
Ahora resuelve los siguientes problemas, siguiendo los pasos anteriores: (haz clic tres veces para comprobar tu respuesta)
2- Proporciones
Una proporción es la igualdad de dos razones.
2.1- Propiedad fundamental
En toda proporción, el producto de los términos medios es igual al producto de los términos extremos (Teorema fundamental de las proporciones). Es decir:
Y le aplicamos la propiedad fundamental señalada queda:
1- Razón
Una razón es una comparación entre dos o más cantidades. Puede expresarse mediante una fracción. Si las cantidades a comparar son a y b, la razón entre ellas se escribe como:
En una sala de clases hay 10 mujeres y 18 hombres.¿Qué relación numérica existe entre el número de mujeres y el número de hombres?
La relación entre el numero de mujeres y el número de hombres es de "10 es a 18" , otra forma de leerlo es "10 de 18 "
El término a es el antecedente de la razón y el b, el consecuente.
El resultado de la división o cociente entre el antecedente y el consecuente se denomina valor de la razón
1.1- Resolución de problemas:
Veamos como resolver problemas de razones:
Ejemplo 1:
La edad de 2 personas están en la relación de 5 a 9 y la suma de ellas es 84. Hallar las edades.
Solución:
Si las edades son a y b
Cuando nos hablan de relación o razón entre dos cantidades sabemos que nos están hablando de una comparación entre dos cantidades. Por lo tanto expresamos los datos como una razón:
Nos indican que la suma de los 2 números nos tiene que dar 84. Esto se expresa así:
Ahora que tenemos el valor de x podemos reemplazar para obtener los valores de a y b :
Ejemplo 2:
El perímetro de un rectángulo mide 128 cm, y la razón entre las medidas de sus lados es 5: 3. Calcula el área del rectángulo.
Solución:
Siguiendo el procedimiento del problema anterior planteamos el problema en una ecuación. Sabemos que el perímetro de un rectángulo es igual a la suma de todos sus lados:
A = a • b
Por lo tanto la respuesta sería :A = 40 • 24 = 960
Respuesta: El área del rectángulo es 960 cm2
Otra forma de resolver razones es siguiendo los siguientes pasos:
Ejemplo 3:
Si hay 33 vehículos entre automóviles y camionetas y la razón entre ellos es 4:7 ¿cuántos automóviles hay?
En este caso se está comparando la cantidad de automóviles con el de
camionetas.Para conocer la cantidad de automóviles que hay podemos
seguir los siguientes pasos:
1° se considera el total de vehículos: 33
2° Se divide 33 por la suma entre el numerador y el denominador de
nuestra razón (4+7= 11). Con esto se obtienen 11 partes con 3 unidades
cada una (ya que 33:11 = 3).
3° Se consideran 4 partes para los automóviles y 7 para las camionetas.
Ahora resuelve los siguientes problemas, siguiendo los pasos anteriores: (haz clic tres veces para comprobar tu respuesta)
a) Si la razón entre dos números es 2:3 y ambos suman 10 ¿Cuáles son los números?
Respuesta:Los números son 4 y 6
b) Martín tiene cinco fichas rojas
por cada dos azules. Si tiene 21 fichas en total, entre rojas y azules,
¿Cuántas fichas tiene de cada color? Respuesta: 6 azules y 15 rojas
c) A un taller de guitarra asisten 30 estudiantes. Si por cada 8 niñas hay 7 niños, ¿cuántos niños y niñas conforman el taller? Respuesta: En el taller de guitarra hay 14 niños y 16 niñas.
2- Proporciones
Una proporción es la igualdad de dos razones.
En toda proporción, el producto de los términos medios es igual al producto de los términos extremos (Teorema fundamental de las proporciones). Es decir:
Ejemplo:
Si tenemos la proporción:
Y le aplicamos la propiedad fundamental señalada queda:
3 • 20 = 4 • 15, es decir, 60 = 60
Esta es la propiedad que nos permite detectar si dos cantidades presentadas como proporción lo
son verdaderamente.
No hay comentarios:
Publicar un comentario